Pt. 53, Subpt. F, Table F-1

method sampler and r is the reference method sampler.

(v) Calculate the residual mass for the reference method sampler:

EQUATION 41A

$$RM_{(ij)} = (FinalWt_r - InitWt_r)$$

where:

i = repetition number; and

j = blow-off time period.

(vi) Calculate the corrected residual mass for the candidate method sampler as:

EQUATION 41B

$$CRM_{(ij)} = (FinalWt_r - InitWt_r) \times \frac{Q_r}{Q_o}$$

where:

i = repetition number;

- j = blow-off time period;
- $Q_{\rm c}$ = candidate method sampler flow rate, and
- Q_r = reference method sampler flow rate.
- (4) Repeat steps in paragraph (e)(1) through (e)(3) of this section until three repetitions have been completed for each of the required blow-off time durations (1, 2, 3, and 4 hours).
- (f) Calculations and analysis. (1) Perform a linear regression with the candidate method CRM as the dependent variable and the reference method RM as the independent variable.
- (2) Determine the following regression parameters: slope, intercept, and correlation coefficient (r).
- (g) Test results. The candidate method passes the volatility test if the regression parameters meet the acceptance criteria specified in table F-1 of this subpart.

 $[62\ {\rm FR}\ 38814,\ {\rm July}\ 18,\ 1997,\ {\rm as}\ {\rm amended}\ {\rm at}\ 71\ {\rm FR}\ 61295,\ {\rm Oct.}\ 17,\ 2006]$

Table F–1 to Subpart F of Part 53—Performance Specifications for $PM_{2.5}$ Class II Equivalent Samplers

Performance test	Specifications	Acceptance criteria		
§ 53.62 Full Wind Tunnel Evaluation	Solid VOAG produced aerosol at 2 km/hr and 24 km/hr.	Dp ₅₀ = 2.5 μm \pm 0.2 μm Numerical Analysis Results: 95% \leq R _c \leq 105%.		
§53.63 Wind Tunnel Inlet Aspiration Test	Liquid VOAG produced aerosol at 2 km/ hr and 24 km/hr.	Relative Aspiration: $95\% \le A \le 105\%$.		
§ 53.64 Static Fractionator Test	Evaluation of the fractionator under static conditions.	Dp_{50} = 2.5 μm \pm 0.2 μm Numerical Analysis Results: 95% \leq R _c \leq 105%.		
§ 53.65 Loading Test	Loading of the clean candidate under laboratory conditions.	Acceptance criteria as specified in the post-loading evaluation test (§ 53.62, § 53.63, or § 53.64).		
§ 53.66 Volatility Test	Polydisperse liquid aerosol produced by air nebulization of A.C.S. reagent grade glycerol, 99.5% minimum purity.	Regression Parameters Slope = 1 \pm 0.1, Intercept = 0 \pm 0.15 mg, r \geq 0.97.		

[72 FR 32209, June 12, 2007]

Table F-2 to Subpart F of Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test

Primary Partical Mean Size a (μm)	Full Wind Tunnel Test		Inlet Aspiration Test		Static Fractionator	Volatility
Filliary Fartical Mean Size - (µm)	2 km/hr	24 km/hr	2 km/hr	24 km/hr	Test	Test
1.5±0.25	S	S			S	
2.0±0.25	S	S			S	
2.2±0.25	S	S			S	
2.5±0.25	S	S			S	
2.8±0.25	S	S			S	
3.0±0.25			L	L		
3.5±0.25	S	s			S	
1.0+0.5	0	٥ .			0	